Mechanisms underlying the enhancement of excitatory synaptic transmission in basolateral amygdala neurons of the kindling rat.

نویسندگان

  • Y Shoji
  • E Tanaka
  • S Yamamoto
  • H Maeda
  • H Higashi
چکیده

To elucidate the mechanism underlying epileptiform discharges in kindled rats, synaptic responses in kindled basolateral amygdala neurons in vitro were compared with those from control rats by using intracellular and whole cell patch-clamp recordings. In kindled neurons, electrical stimulation of the stria terminalis induced epileptiform discharges. The resting potential, apparent input resistance, current-voltage relationship of the membrane, and the threshold, amplitude, and duration of action potentials in kindled neurons were not different from those in control neurons. The electrical stimulation of stria terminalis elicited excitatory postsynaptic potentials (EPSPs) and DL-2-amino-5-phosphonopentanoic acid (AP5)-sensitive and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive excitatory postsynaptic currents (EPSCs). The amplitude of evoked EPSPs and of evoked AP5-sensitive and CNQX-sensitive EPSCs were enhanced markedly, whereas fast and slow inhibitory postsynaptic potentials (IPSPs) induced by electrical stimulation of lateral amygdaloid nucleus were not significantly different. The rise time and the decay time constant of the evoked CNQX-sensitive EPSCs were shortened, whereas the rise time of the evoked AP5-sensitive EPSCs was shortened, but the decay time constants were not significantly different. In both tetrodotoxin (TTX)-containing medium and low Ca2+ and TTX-containing medium, the frequency and amplitude of spontaneous EPSCs were increased in kindled neurons. These increases are presumably due to nearly synchronous multiquantal events resulted from the increased probability of Glu release at the nerve terminals. The rise time of evoked CNQX- and AP5-sensitive EPSCs and the decay time constant of evoked CNQX-sensitive EPSCs were shortened, suggesting that excitatory synapses at the proximal dendrite and/or the soma in kindled neurons may contribute more effectively to generate evoked EPSCs than those at distal dendrites. In conclusion, the increases in the amplitudes of spontaneous and evoked EPSCs and in the frequency of spontaneous EPSCs may contribute to the epileptiform discharges in kindled neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats

Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...

متن کامل

Long-term depression of excitatory synaptic transmission in the rat amygdala.

In view of the fact that both kindling and fear-potentiated startle are expressed by long-term enhancement of synaptic transmission in the amygdala, synaptic plasticity in this area of the brain is of particular importance. Here, we show for the first time that low-frequency stimulation of the lateral nucleus at 1 Hz for 15 min elicited a long-term depression (LTD) in the basolateral amygdala (...

متن کامل

Effect of repeated transcranial magnetic stimulation during epileptogenesis on spontaneous activity of hippocampal CA1 pyramidal neurons in rats

Introduction: Considering the antiepileptogenic effects of repeated transcranial magnetic stimulation (rTMS), the effect of rTMS applied during amygdala kindling on spontaneous activity of hippocampal CA1 pyramidal neurons was investigated. Materials and Methods: A tripolar electrode was inserted in basolateral amygdala of Male Wistar rats. After a recovery period, animals received daily kindl...

متن کامل

Loss of long-lasting potentiation mediated by group III mGluRs in amygdala neurons in kindling-induced epileptogenesis.

Long-lasting modifications of synaptic transmission can be induced in the amygdala by electrical stimulation as done in the long-term potentiation (LTP) model of learning and memory and the kindling model of epilepsy. The present study reports for the first time a long-lasting potentiation (LLP) of synaptic transmission that is induced pharmacologically by the activation of group III metabotrop...

متن کامل

In vivo kindling does not alter afterhyperpolarizations (AHPs) following action potential firing in vitro in basolateral amygdala neurons.

Kindling in vivo results in enhanced glutamatergic synaptic transmission and epileptiform bursting in vitro in neurons of the basolateral amygdala (BLA). We tested the hypothesis that reduction of intrinsic inhibitory mechanisms, such as the slow- and medium-afterhyperpolarizations (s-AHPs, m-AHPs), contributes to the enhanced neuronal excitability observed in kindling-induced epileptogenesis u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 2  شماره 

صفحات  -

تاریخ انتشار 1998